skip to main content


Search for: All records

Creators/Authors contains: "Cheng, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Human-conducted rating tasks are resource-intensive and demand significant time and financial commitments. As Large Language Models (LLMs) like GPT emerge and exhibit prowess across various domains, their potential in automating such evaluation tasks becomes evident. In this research, we leveraged four prominent LLMs: GPT-4, GPT-3.5, Vicuna, and PaLM 2, to scrutinize their aptitude in evaluating teacher-authored mathematical explanations. We utilized a detailed rubric that encompassed accuracy, explanation clarity, the correctness of mathematical notation, and the efficacy of problem-solving strategies. During our investigation, we unexpectedly discerned the influence of HTML formatting on these evaluations. Notably, GPT-4 consistently favored explanations formatted with HTML, whereas the other models displayed mixed inclinations. When gauging Inter-Rater Reliability (IRR) among these models, only Vicuna and PaLM 2 demonstrated high IRR using the conventional Cohen’s Kappa metric for explanations formatted with HTML. Intriguingly, when a more relaxed version of the metric was applied, all model pairings showcased robust agreement. These revelations not only underscore the potential of LLMs in providing feedback on student-generated content but also illuminate new avenues, such as reinforcement learning, which can harness the consistent feedback from these models. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. The vibrational branching ratios of SrOH for radiative decay to the ground electronic state, X2Σ+, from the first two electronically excited states, A2Π and B2Σ+, are determined experimentally at the ∼10−5 level. The observed small branching ratios enable the design of a full, practical laser-cooling scheme, including magneto-optical trapping and sub-Doppler laser cooling, with >104 photon scatters per molecule. Ab initio calculations sensitive to weak vibronic transitions are performed to facilitate the experimental measurement and analysis, and show good agreement with experiment. 
    more » « less
  3. Cyberbullying has become increasingly prevalent, particularly on social media. There has also been a steady rise in cyberbullying research across a range of disciplines. Much of the empirical work from computer science has focused on developing machine learning models for cyberbullying detection. Whereas machine learning cyberbullying detection models can be improved by drawing on psychological theories and perspectives, there is also tremendous potential for machine learning models to contribute to a better understanding of psychological aspects of cyberbullying. In this paper, we discuss how machine learning models can yield novel insights about the nature and defining characteristics of cyberbullying and how machine learning approaches can be applied to help clinicians, families, and communities reduce cyberbullying. Specifically, we discuss the potential for machine learning models to shed light on the repetitive nature of cyberbullying, the imbalance of power between cyberbullies and their victims, and causal mechanisms that give rise to cyberbullying. We orient our discussion on emerging and future research directions, as well as the practical implications of machine learning cyberbullying detection models. 
    more » « less
  4. Increased social media use has contributed to the greater prevalence of abusive, rude, and offensive textual comments. Machine learning models have been developed to detect toxic comments online, yet these models tend to show biases against users with marginalized or minority identities (e.g., females and African Americans). Established research in debiasing toxicity classifiers often (1) takes a static or batch approach, assuming that all information is available and then making a one-time decision; and (2) uses a generic strategy to mitigate different biases (e.g., gender and racial biases) that assumes the biases are independent of one another. However, in real scenarios, the input typically arrives as a sequence of comments/words over time instead of all at once. Thus, decisions based on partial information must be made while additional input is arriving. Moreover, social bias is complex by nature. Each type of bias is defined within its unique context, which, consistent with intersectionality theory within the social sciences, might be correlated with the contexts of other forms of bias. In this work, we consider debiasing toxicity detection as a sequential decision-making process where different biases can be interdependent. In particular, we study debiasing toxicity detection with two aims: (1) to examine whether different biases tend to correlate with each other; and (2) to investigate how to jointly mitigate these correlated biases in an interactive manner to minimize the total amount of bias. At the core of our approach is a framework built upon theories of sequential Markov Decision Processes that seeks to maximize the prediction accuracy and minimize the bias measures tailored to individual biases. Evaluations on two benchmark datasets empirically validate the hypothesis that biases tend to be correlated and corroborate the effectiveness of the proposed sequential debiasing strategy. 
    more » « less
  5. null (Ed.)
    The element of repetition in cyberbullying behavior has directed recent computational studies toward detecting cyberbullying based on a social media session. In contrast to a single text, a session may consist of an initial post and an associated sequence of comments. Yet, emerging efforts to enhance the performance of session-based cyberbullying detection have largely overlooked unintended social biases in existing cyberbullying datasets. For example, a session containing certain demographic-identity terms (e.g., “gay” or “black”) is more likely to be classified as an instance of cyberbullying. In this paper, we first show evidence of such bias in models trained on sessions collected from different social media platforms (e.g., Instagram). We then propose a context-aware and model-agnostic debiasing strategy that leverages a reinforcement learning technique, without requiring any extra resources or annotations apart from a pre-defined set of sensitive triggers commonly used for identifying cyberbullying instances. Empirical evaluations show that the proposed strategy can simultaneously alleviate the impacts of the unintended biases and improve the detection performance. 
    more » « less
  6. null (Ed.)
    Cyberbullying, identified as intended and repeated online bullying behavior, has become increasingly prevalent in the past few decades. Despite the significant progress made thus far, the focus of most existing work on cyberbullying detection lies in the independent content analysis of different comments within a social media session. We argue that such leading notions of analysis suffer from three key limitations: they overlook the temporal correlations among different comments; they only consider the content within a single comment rather than the topic coherence across comments; they remain generic and exploit limited interactions between social media users. In this work, we observe that user comments in the same session may be inherently related, e.g., discussing similar topics, and their interaction may evolve over time. We also show that modeling such topic coherence and temporal interaction are critical to capture the repetitive characteristics of bullying behavior, thus leading to better predicting performance. To achieve the goal, we first construct a unified temporal graph for each social media session. Drawing on recent advances in graph neural network, we then propose a principled graph-based approach for modeling the temporal dynamics and topic coherence throughout user interactions. We empirically evaluate the effectiveness of our approach with the tasks of session-level bullying detection and comment-level case study. Our code is released to public. 
    more » « less
  7. null (Ed.)
    We develop a hybrid approach that combines the Monte Carlo (MC)method, a variational implicit-solvent model (VISM), and a binary level-set method forthe simulation of biomolecular binding in an aqueous solvent. The solvation free energy for the biomolecular complex is estimated by minimizing the VISM free-energy functional of all possible solute−solvent interfaces that are used as dielectric boundaries. This functional consists of the solute volumetric, solute−solvent interfacial, solute−solvent van der Waals interaction, and electrostatic free energy. A technique of shifting the dielectric boundary is used to accurately predict the electrostatic part of the solvation free energy.Minimizing such a functional in each MC move is made possible by our new and fast binary level-set method. This method is based on the approximation of surface area by the convolution of an indicator function with a compactly supported kernel and is implemented by simple flips of numerical grid cells locally around the solute−solvent interface. We apply our approach to the p53-MDM2 system for which the two molecules are approximated by rigid bodies. Our efficient approach captures some of the poses before the final bound state. All atom molecular dynamics simulations with most of such poses quickly reach the final bound state.Our work is a new step toward realistic simulations of biomolecular interactions. With further improvement of coarse graining and MC sampling, and combined with other models, our hybrid approach can be used to study the free-energy landscape and kinetic pathways of ligand binding to proteins. 
    more » « less